| Name | Class | Date | 900.7 | |------|-------|------|-------| | | | | | Assessment ## **Fluid Mechanics** ## **Section Quiz: Fluid Pressure** Write the letter of the correct answer in the space provided. - ______ 1. According to Pascal's Principle, how is applied pressure transmitted to every point in a fluid and to the walls of the container holding the fluid? - a. Pressure decreases toward the container walls. - b. Pressure increases toward the container walls. - c. Pressure is equal and uniform throughout the fluid. - **d.** Pressure depends on the shape of the container. - **2.** An area of 1.0 m² and an area of 1.0 cm² have the same atmospheric pressure applied to them. Which of the following statements is correct? - **a.** The atmospheric force is greater on the $1.0~\mathrm{m}^2$ area. - **b.** The atmospheric force is equal for both areas. - **c.** The atmospheric force is less on the 1.0 m² area. - **d.** Atmospheric force does not depend on pressure or area. - ____ **3.** What force exerts 8.0×10^4 Pa of pressure on an area of 1.0×10^{-2} m²? - **a.** $8.0 \times 10^{-6} \text{ N}$ c. $8.0 \times 10^2 \text{ N}$ **b.** $8.0 \times 10^{-2} \,\mathrm{N}$ - **d.** $8.0 \times 10^6 \text{ N}$ - **4.** What is pressure that depends on depth, fluid density, and free-fall acceleration called? - a. total pressure c. absolute pressure **b.** gauge pressure - **d.** atmospheric pressure - **5.** A force of 580 N is applied on a 2.0 m² piston of a hydraulic lift. If a crate weighing 2900 N is raised, what is the area of the piston beneath the crate? - **a.** $1.0 \times 10^{-2} \text{ m}^2$ **c.** 2.5 m^2 **b.** 0.40 m^2 - **d.** $1.0 \times 10^1 \,\mathrm{m}^2$ - **6.** The absolute pressure 20 m beneath the ocean is 3.03×10^5 Pa. Atmospheric pressure above the ocean is 1.01×10^5 Pa. What pressure does the sea water apply? - **a.** $4.04 \times 10^5 \, \text{Pa}$ **c.** $2.02 \times 10^5 \, \text{Pa}$ **b.** $3.03 \times 10^5 \, \text{Pa}$ **d.** $1.01 \times 10^5 \, \text{Pa}$ | Name | t latest | Class | Date | |---------------------|---|--|--| | Fluid | Mechanics contin | ued | . J. Santania (1986) | | La Rosal | fluid equals th | second law
inciple | een the two depths. This is | | | depth of 30.0 statements is $(\rho_{Hg} = 13.6 \text{ g/}$ a. It will be c b. It will be c c. It will be c | pressure crushes a closed v
m in water ($\rho_w = 1.00$ g/cm
true if this same container
'cm ³)?
rushed at a greater depth ir
rushed at the same depth ir
rushed at a shallower depth
be crushed at any depth. | ³). Which of the following is immersed in mercury mercury than in water. In mercury as in water. | | allo
Hov
larg | ws you to lift an ever, the smaller | r piston must be pushed do
d. Use the concepts of mecl | applied to a small piston
greater than the applied force.
wn a farther distance than the
hanical advantage and Pascal's | | | 42 | | 7 | | | | tage to the state of the suppose to | The Character of Ch | | _ | 7207231G 0133 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | and the second second second second | | and
sma | the other with a | ists of two cylindrical pistor
radius of 8.0 cm. What forc
ate with a mass of 1.5×10 | ns, one with a radius of 1.5 m
re must be applied to the
³ kg is to be raised on the |