Name	Class	Date	900.7

Assessment

Fluid Mechanics

Section Quiz: Fluid Pressure

Write the letter of the correct answer in the space provided.

- ______ 1. According to Pascal's Principle, how is applied pressure transmitted to every point in a fluid and to the walls of the container holding the fluid?
 - a. Pressure decreases toward the container walls.
 - b. Pressure increases toward the container walls.
 - c. Pressure is equal and uniform throughout the fluid.
 - **d.** Pressure depends on the shape of the container.
- **2.** An area of 1.0 m² and an area of 1.0 cm² have the same atmospheric pressure applied to them. Which of the following statements is correct?
 - **a.** The atmospheric force is greater on the $1.0~\mathrm{m}^2$ area.
 - **b.** The atmospheric force is equal for both areas.
 - **c.** The atmospheric force is less on the 1.0 m² area.
 - **d.** Atmospheric force does not depend on pressure or area.
 - ____ **3.** What force exerts 8.0×10^4 Pa of pressure on an area of 1.0×10^{-2} m²?
 - **a.** $8.0 \times 10^{-6} \text{ N}$

c. $8.0 \times 10^2 \text{ N}$

b. $8.0 \times 10^{-2} \,\mathrm{N}$

- **d.** $8.0 \times 10^6 \text{ N}$
- **4.** What is pressure that depends on depth, fluid density, and free-fall acceleration called?
 - a. total pressure

c. absolute pressure

b. gauge pressure

- **d.** atmospheric pressure
- **5.** A force of 580 N is applied on a 2.0 m² piston of a hydraulic lift. If a crate weighing 2900 N is raised, what is the area of the piston beneath the crate?
 - **a.** $1.0 \times 10^{-2} \text{ m}^2$

c. 2.5 m^2

b. 0.40 m^2

- **d.** $1.0 \times 10^1 \,\mathrm{m}^2$
- **6.** The absolute pressure 20 m beneath the ocean is 3.03×10^5 Pa. Atmospheric pressure above the ocean is 1.01×10^5 Pa. What pressure does the sea water apply?
 - **a.** $4.04 \times 10^5 \, \text{Pa}$

c. $2.02 \times 10^5 \, \text{Pa}$

b. $3.03 \times 10^5 \, \text{Pa}$

d. $1.01 \times 10^5 \, \text{Pa}$

Name	t latest	Class	Date
Fluid	Mechanics contin	ued	. J. Santania (1986)
La Rosal	fluid equals th	second law inciple	een the two depths. This is
	depth of 30.0 statements is $(\rho_{Hg} = 13.6 \text{ g/}$ a. It will be c b. It will be c c. It will be c	pressure crushes a closed v m in water ($\rho_w = 1.00$ g/cm true if this same container 'cm ³)? rushed at a greater depth ir rushed at the same depth ir rushed at a shallower depth be crushed at any depth.	³). Which of the following is immersed in mercury mercury than in water. In mercury as in water.
allo Hov larg	ws you to lift an ever, the smaller	r piston must be pushed do d. Use the concepts of mecl	applied to a small piston greater than the applied force. wn a farther distance than the hanical advantage and Pascal's
	42		7
		tage to the state of the suppose to	The Character of the Ch
_	7207231G 0133	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and the second second second second
and sma	the other with a	ists of two cylindrical pistor radius of 8.0 cm. What forc ate with a mass of 1.5×10	ns, one with a radius of 1.5 m re must be applied to the ³ kg is to be raised on the