Assessment

Circular Motion and Gravitation

Section Quiz: Circular Motion

Write the letter of the correct answer in the space provided.

- 1. Centripetal acceleration must involve a change in
 - a. an object's tangential speed.
 - **b.** an object's velocity.
 - **c.** both an object's speed and direction.
 - **d.** the radius of an object's circular motion.
 - **2.** What is the speed of an object in circular motion called?
 - a. circular speed
 - **b.** centripetal speed
 - c. tangential speed
 - d. inertial speed
- **3.** Which of the following is the correct equation for centripetal acceleration?
 - $\mathbf{a.} \ a_c = \frac{{v_t}^2}{r}$

 - $b. \ a_c = \frac{\dot{v_t}}{r}$ $c. \ a_c = \frac{m{v_t}^2}{r}$ $d. \ a_c = \frac{(v_{t,f} v_{t,i})}{\Delta t}$
- 4. What is the centripetal acceleration of a skater moving with a tangential speed of 2.0 m/s in a circular path with radius 2.0 m?
 - **a.** 1.0 m/s^2
 - **b.** 2.0 m/s^2
 - **c.** 4.0 m/s^2
 - **d.** 8.0 m/s^2
 - 5. What term describes a force that causes an object to move in a circular path?
 - a. circular force
 - **b.** centripetal acceleration
 - c. centripetal force
 - d. centrifugal force
 - **6.** A centripetal force acts
 - **a.** in the same direction as tangential speed.
 - **b.** in the direction opposite tangential speed.
 - **c.** perpendicular to the plane of circular motion.
 - **d.** perpendicular to tangential speed but in the same plane.

Name		Class	Date
Circular Motion	and Gravitation	continued	taam seesa 🎚
	road Thomas		
a. dividi b. multi c. squar	ng by the mass. plying by the ma ing the accelerat ing the accelerat	ss. tion and dividing	g by the radius.
a. A balb. A baltion cc. A baldirecd. A bal	lirected toward t l whirled in a cir ted toward the c	cular motion stacular motion ex the center of mo cular motion ex enter of motion.	ays in one plane. periences centripetal accelera- periences a centripetal force
			when a car executes a turn. ward the outside of the turn.
7.5 m radius of		late the centrip	m/s executes a turn with a etal acceleration of the car and