Assessment ## **Circular Motion and Gravitation** ## **Section Quiz: Circular Motion** Write the letter of the correct answer in the space provided. - 1. Centripetal acceleration must involve a change in - a. an object's tangential speed. - **b.** an object's velocity. - **c.** both an object's speed and direction. - **d.** the radius of an object's circular motion. - **2.** What is the speed of an object in circular motion called? - a. circular speed - **b.** centripetal speed - c. tangential speed - d. inertial speed - **3.** Which of the following is the correct equation for centripetal acceleration? - $\mathbf{a.} \ a_c = \frac{{v_t}^2}{r}$ - $b. \ a_c = \frac{\dot{v_t}}{r}$ $c. \ a_c = \frac{m{v_t}^2}{r}$ $d. \ a_c = \frac{(v_{t,f} v_{t,i})}{\Delta t}$ - 4. What is the centripetal acceleration of a skater moving with a tangential speed of 2.0 m/s in a circular path with radius 2.0 m? - **a.** 1.0 m/s^2 - **b.** 2.0 m/s^2 - **c.** 4.0 m/s^2 - **d.** 8.0 m/s^2 - 5. What term describes a force that causes an object to move in a circular path? - a. circular force - **b.** centripetal acceleration - c. centripetal force - d. centrifugal force - **6.** A centripetal force acts - **a.** in the same direction as tangential speed. - **b.** in the direction opposite tangential speed. - **c.** perpendicular to the plane of circular motion. - **d.** perpendicular to tangential speed but in the same plane. | Name | | Class | Date | |--|---|--|---| | Circular Motion | and Gravitation | continued | taam seesa 🎚 | | | road Thomas | | | | a. dividi
b. multi
c. squar | ng by the mass.
plying by the ma
ing the accelerat
ing the accelerat | ss.
tion and dividing | g by the radius. | | a. A balb. A baltion cc. A baldirecd. A bal | lirected toward t
l whirled in a cir
ted toward the c | cular motion stacular motion ex
the center of mo
cular motion ex
enter of motion. | ays in one plane.
periences centripetal accelera-
periences a centripetal force | | | | | when a car executes a turn. ward the outside of the turn. | | | | | | | | | | | | | | | | | 7.5 m radius of | | late the centrip | m/s executes a turn with a
etal acceleration of the car and |