| Class | Date | | |-------|-------|------------| | | Class | Class Date | Assessment ## **Momentum and Collisions** ## **Section Quiz: Momentum and Impulse** Write the letter of the correct answer in the space provided. | | 1. What is the product of an object's mass and its velocity? a. kinetic energy b. momentum c. impulse d. inertia | |--------------|--| | | 2. Which of the following has the greatest momentum? a. a 4.0 kg bowling ball moving at 2.0 m/s b. a 0.15 kg baseball moving at 10.0 m/s c. a 1.6 × 10³ kg car moving at 0.5 m/s d. a 0.02 kg bullet moving at 950 m/s | | am a
30 % | J. How does the momentum of an object change if the object's velocity doubles? a. The momentum doubles. b. The momentum increases by a factor of four. c. The momentum decreases by a factor of 1/2. d. The momentum decreases by a factor of 1/4. | | | 4. What are the units of momentum? a. N b. J c. kg•m/s d. kg•m/s² | | | 5. Which of the following can determine the magnitude of the change in an object's momentum? a. mass and acceleration b. force and time interval c. force and distance d. acceleration and time interval | | | 6. Which of the following is true of changes in momentum? a. A small force may produce a large change in momentum by acting over a short time interval. b. A small force may produce a large change in momentum by acting over a long distance. | over a short time interval. on a very massive object. c. A large force may produce a small change in momentum by acting **d.** A small force may produce a large change in momentum by acting | Name _ | 5000 | Class | Date | | | |---------------|---|---------------------------------|-----------------------------------|--|--| | Mom | entum and Collisions | continued | Olygniziose i | | | | | | | | | | | | 7. If a net force acts or | n an object, then the ob | oject's momentum | | | | | a. will increase. | | | | | | | b. will decrease. | | | | | | | c. will either increase | se or decrease. | | | | | | d. may or may not c | hange. | | | | | | 8. Which of the follows | ing involves a change i | n momentum? | | | | | a. A bowling ball ro | lls down the lane at co | nstant speed. | | | | | b. A car coasts down a hill at constant speed. | | | | | | | c. A sky diver descends with terminal velocity. | | | | | | | d. A spacecraft trav | els at constant speed v | while slowly losing mass. | | | | 9. Def | ine impulse, and state th | ne impulse-momentum | theorem. | | | | | | na U.S. Fa. St. Likokin Albeit. | (1)204 2 1 1 1 1 1 5
(1)200 ml | | | | | | eligilistis garota no | | | | | - | | | | | | 10. A 1.0×10^4 kg spacecraft is traveling through space with a speed of 1200 m/s relative to Earth. A thruster fires for 2.0 min, exerting a continuous force of 25 kN on the spacecraft in a direction opposite the spacecraft's motion. Calculate the initial momentum and the final momentum of the spacecraft.