\qquad
\qquad
Assessment
Acid-Base Titration and pH

Section Quiz: Aqueous Solutions and the Concept of pH

In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.
\qquad 1. What is the concentration of hydronium ions in pure water?
a. $1.0 \times 10^{-7} \mathrm{M}$
b. $\frac{K_{w}}{\left[\mathrm{OH}^{-}\right]}$
c. the same as $\left[\mathrm{OH}^{-}\right]$
d. All of the above
\qquad 2. As the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a solution increases, the value of
a. $\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increases.
b. $-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$decreases.
c. the solution's pH decreases.
d. All of the above
\qquad 3. The pH of a solution is defined as
a. $\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.
b. $-\log \left[\mathrm{OH}^{-}\right]$.
c. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times 10^{-7}$.
d. $-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.
\qquad 4. Which of the following is not a property of an acidic solution?
a. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$greater than $1 \times 10^{-7} \mathrm{M}$
b. $\left[\mathrm{HO}^{-}\right]$greater than $1 \times 10^{-7} \mathrm{M}$
c. pH value below 7
d. pOH value greater than 7
5. A basic solution
a. has a higher concentration of hydronium ions than hydroxide ions.
b. has the same concentration of hydronium and hydroxide ions.
c. has a lower concentration of hydronium ions than hydroxide ions.
d. does not have hydronium ions.

Name \qquad
\qquad
Section Quiz, continued
\qquad 6. If the pH of a solution increases from 2.0 to 4.0 , the $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration
a. decreases by a factor of 2 .
b. decreases by a factor of 100 .
c. increases by a factor of 3 .
d. increases by a factor of 1000 .
\qquad 7. Which of the following substances is a weak base?
a. NH_{3}
b. KOH
c. $\mathrm{K}_{2} \mathrm{O}$
d. NaOH
\qquad 8. A solution that has a pH of 13 is a
a. strong acid.
b. strong base.
c. weak acid.
d. weak base.
\qquad 9. What is the pH of household ammonia in which the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is $1.0 \times 10^{-12} \mathrm{M}$?
a. 2
b. 7
c. 10
d. 12
10. What is the $\left[\mathrm{OH}^{-}\right]$in a sample of lime juice with a pH of 2.0 ?
a. $1.0 \times 10^{-2} \mathrm{M}$
b. $1.0 \times 10^{-7} \mathrm{M}$
c. $1.0 \times 10^{-10} \mathrm{M}$
d. $1.0 \times 10^{-12} \mathrm{M}$

12 Solutions

Section: Types of Mixtures

1. a	2. b
3. c	4. b
5. d	6. c
7. a	8. a
9. b	10. c

Section: The Solution Process

1. d	2. a
3. d	4. c
5. a	6. c
7. a	8. d
9. d	10. d

Section: Concentration of Solutions

1. c
2. a
3. a
4. d
5. c
6. d
7. a
8. d
9. b
10. c

13 Ions in Aqueous Solutions and Colligative Properties

Section: Compunds in Aqueous Soutions

1. d
2. a
3. a
4. C
5. a
6. d
7. c
8. a
9. b
10. b

Section: Colligative Properties of Solutions

1. b	2. b
3. d	4. b
5. c	6. a
7. c	8. b
9. c	10. b

14 Acids and Bases
Section: Properties of Acids and Bases

1. d
2. c
3. b
4. a
5. a
6. a
7. a
8. c
9. d
10. b

1. c	2. b
3. a	4. b
5. b	6. a
7. d	8. c
9. b	10. d

Section: Acid-Base Reactions

1. c	2. c
3. c	4. d
5. b	6. c
7. d	8. c
9. a	10. a

15 Acid-Base Titration

 and pHSection: Aqueous Solutions and the Concept of pH

1. d
2. d
3. d
4. b
5. c
6. b
7. a
8. b
9. d
10. d

Section: Determining pH and Titrations

1. d	2. b
3. c	4. a
5. c	6. b
7. b	8. b
9. c	10. a

16 Reaction Energy

Section: Thermochemistry

1. d
2. a
3. b
4. a
5. c
6. c
7. c
8. b
9. c
10. b

Section: Driving Forces of Reactions

1. b	2. a
3. d	4. a
5. b	6. a
7. a	8. b
9. c	10. d

