Assessment)

Acid-Base Titration and pH

Section Quiz: Aqueous Solutions and the Concept of pH

In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

- **1.** What is the concentration of hydronium ions in pure water? **a.** 1.0×10^{-7} M
 - **b.** $\frac{K_w}{[OH^-]}$
 - **c.** the same as [OH⁻]
 - **d.** All of the above
 - **2.** As the $[H_3O^+]$ of a solution increases, the value of
 - **a.** $\log [H_3O^+]$ increases.
 - **b.** $-\log [H_3O^+]$ decreases.
 - $\boldsymbol{\mathsf{c.}}$ the solution's pH decreases.
 - **d.** All of the above
 - **3.** The pH of a solution is defined as
 - **a.** $\log [H_3O^+]$.
 - **b.** $-\log [OH^{-}].$
 - **c.** $[\mathrm{H}_{3}\mathrm{O}^{+}] \times 10^{-7}$.
 - **d.** $-\log [H_3O^+].$
 - **4.** Which of the following is *not* a property of an acidic solution?
 - **a.** $[{\rm H_3O}^+]$ greater than 1×10^{-7} M
 - **b.** [HO⁻] greater than 1×10^{-7} M
 - **c.** pH value below 7
 - **d.** pOH value greater than 7
 - 5. A basic solution
 - a. has a higher concentration of hydronium ions than hydroxide ions.
 - **b.** has the same concentration of hydronium and hydroxide ions.
 - **c.** has a lower concentration of hydronium ions than hydroxide ions.
 - **d.** does not have hydronium ions.

Name Section Quiz, continued

6. If the pH of a solution increases from 2.0 to 4.0, the H_3O^+ ion concentration

- **a.** decreases by a factor of 2.
- **b.** decreases by a factor of 100.
- **c.** increases by a factor of 3.
- **d.** increases by a factor of 1000.

7. Which of the following substances is a weak base?

- **a.** NH_3
- **b.** KOH
- c. K_2O
- d. NaOH
- **8.** A solution that has a pH of 13 is a
 - a. strong acid.
 - **b.** strong base.
 - **c.** weak acid.
 - **d.** weak base.
- **9.** What is the pH of household ammonia in which the $[H_3O^+]$ is 1.0×10^{-12} M?
 - **a.** 2
 - **b.** 7
 - **c.** 10
 - **d.** 12
- **10.** What is the $[OH^-]$ in a sample of lime juice with a pH of 2.0?

97

- **a.** 1.0×10^{-2} M
- **b.** $1.0 \times 10^{-7} \,\mathrm{M}$
- **c.** $1.0 \times 10^{-10} \text{ M}$
- **d.** 1.0×10^{-12} M

TEACHER RESOURCE PAGE

12 Solutions

Section: Types of Mixtures		
1. a	2. b	
3. c	4. b	
5. d	6. c	
7. a	8. a	
9. b	10. c	

Section: The Solution Process

1. d	2. a
3. d	4. c
5. a	6. c
7. a	8. d
9. d	10. d

Section: Concentration of Solutions

1. c	2. a
3. a	4. d
5. c	6. d
7. a	8. d
9. b	10. c

13 Ions in Aqueous Solutions and Colligative Properties

Section: Compunds in Aqueous Soutions

1. d	2. a
3. a	4. c
5. a	6. d
7. с	8. a
9. b	10. b

Section: Colligative Properties of Solutions

1. b	2. b	
3. d	4. b	
5. c	6. a	
7. с	8. b	
9. c	10. b	

14 Acids and Bases

Section: Prop	perties of Acids and Bases	5
1. d	2. c	
3. b	4. a	
5. a	6. a	
7. a	8. c	
9. d	10. b	

Section: Acid-Base Theories

2. b
4. b
6. a
8. c
10. d

Section: Acid-Base Reactions

1. c	2. c
3. c	4. d
5. b	6. c
7. d	8. c
9. a	10. a
9. a	10. a

15 Acid-Base Titration and pH

Section: Aqueous Solutions and the Concept of pH

1. d	2. d	
3. d	4. b	
5. c	6. b	
7. a	8. b	
9. d	10. d	

Section: Determining pH and Titrations

1. d	2. b
3. c	4. a
5. c	6. b
7. b	8. b
9. c	10. a

16 Reaction Energy

Section: Thermochemistry

1. d	2. a
3. b	4. a
5. c	6. c
7. с	8. b
9. c	10. b

Section: Driving Forces of Reactions

1. b	2. a
3. d	4. a
5. b	6. a
7. a	8. b
9. c	10. d

Copyright © by Holt, Rinehart and Winston. All rights reserved.