Assessment

Acids and Bases

Section Quiz: Acid-Base Reactions

In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

- **1.** What is the conjugate base of the hydronium ion, H_3O^+ ?
 - **a.** OH⁻
 - **b.** H⁺
 - **c.** H₂O
 - **d.** $H_{3}^{-}O^{2+}$
 - **2.** The conjugate acid of the chloride ion, Cl^- , is
 - **a.** Cl₂.
 - **b.** H⁺.
 - c. HCl.
 - **d.** ClO.
 - **3.** A conjugate acid is an acid that forms when
 - **a.** the acid gains a proton.
 - **b.** a base loses a proton.
 - **c.** a base gains a proton.
 - **d.** an atom accepts an electron pair.
 - **4.** Ions that are present before and after a neutralization reaction are
 - **a.** nonelectrolytes.
 - **b.** metal ions.
 - **c.** neutral ions.
 - **d.** spectator ions.
- **5.** In an acid-base reaction, the conjugate base of the weaker acid is the
 - a. stronger acid.
 - **b.** stronger base.
 - **c.** weaker base.
 - **d.** None of the above

Class _____ Date _____

Section Quiz, continued

- **6.** An amphoteric species is one that reacts at 25° C as a(n)
 - a. acid only.
 - **b.** base only.
 - **c.** acid or base.
 - **d.** None of the above
 - 7. A conjugate base is the species that
 - **a.** remains after a base has given up a proton.
 - **b.** is formed by the addition of a proton.
 - **c.** is formed by the addition of a proton to a base.
 - **d.** remains after an acid has given up a proton.
- **8.** In the following reaction, which substance is the conjugate base of $HClO_4$?

$$\mathrm{HClO}_4(aq) + \mathrm{H}_2\mathrm{O}(l) \to \mathrm{H}_3\mathrm{O}^+(aq) + \mathrm{ClO}_4^-(aq)$$

- **a.** $H_2O(l)$
- **b.** $H_3O^+(aq)$
- c. $ClO_4^-(aq)$
- **d.** Both (a) and (b)
- 9. Water is amphoteric. If it reacts with a compound that is a stronger acid than itself, water acts as a
 - a. weak base.
 - **b.** strong base.
 - c. weak acid.
 - **d.** hydroxide ion.
 - **10.** Which of the following is most acidic?
 - **a.** H_2CrO_4
 - **b.** $Cr(OH)_3$
 - **c.** $Cr(OH)_2$
 - **d.** Cr

TEACHER RESOURCE PAGE

12 Solutions

Section: Types of Mixtures		
1. a	2. b	
3. c	4. b	
5. d	6. c	
7. a	8. a	
9. b	10. c	

Section: The Solution Process

1. d	2. a
3. d	4. c
5. a	6. c
7. a	8. d
9. d	10. d

Section: Concentration of Solutions

1. c	2. a
3. a	4. d
5. c	6. d
7. a	8. d
9. b	10. c

13 Ions in Aqueous Solutions and Colligative Properties

Section: Compunds in Aqueous Soutions

1. d	2. a
3. a	4. c
5. a	6. d
7. с	8. a
9. b	10. b

Section: Colligative Properties of Solutions

1. b	2. b	
3. d	4. b	
5. c	6. a	
7. с	8. b	
9. c	10. b	

14 Acids and Bases

Section: Prop	perties of Acids and Bases	5
1. d	2. c	
3. b	4. a	
5. a	6. a	
7. a	8. c	
9. d	10. b	

Section: Acid-Base Theories

2. b
4. b
6. a
8. c
10. d

Section: Acid-Base Reactions

1. c	2. c
3. c	4. d
5. b	6. c
7. d	8. c
9. a	10. a
9. a	10. a

15 Acid-Base Titration and pH

Section: Aqueous Solutions and the Concept of pH

1. d	2. d	
3. d	4. b	
5. c	6. b	
7. a	8. b	
9. d	10. d	

Section: Determining pH and Titrations

1. d	2. b
3. c	4. a
5. c	6. b
7. b	8. b
9. c	10. a

16 Reaction Energy

Section: Thermochemistry

1. d	2. a
3. b	4. a
5. c	6. c
7. с	8. b
9. c	10. b

Section: Driving Forces of Reactions

1. b	2. a
3. d	4. a
5. b	6. a
7. a	8. b
9. c	10. d

Copyright © by Holt, Rinehart and Winston. All rights reserved.