Assessment

Acids and Bases

Section Quiz: Acid-Base Theories

In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

- _____ 1. All Brønsted-Lowry acids
 - **a.** are aqueous solutions.
 - **b.** can act as Arrhenius acids.
 - **c.** donate protons.
 - **d.** All of the above
- **2.** Which of the following substances is both a Brønsted-Lowry base and an Arrhenius base?
 - **a.** $NH_3(s)$
 - **b.** $NH_3(aq)$
 - c. HCl(g)
 - **d.** HCl(aq)
- **3.** In the following reaction, which substance acts as a Brønsted-Lowry acid?

$$HCl + NH_3 \rightarrow NH_4^+ + Cl^-$$

- a. HCl
- **b.** NH₃
- **c.** NH_4^+
- **d.** Cl
- **4.** In the following reaction, which substance acts as a Brønsted-Lowry base?

$$HCl + NH_3 \rightarrow NH_4^+ + Cl^-$$

- a. HCl
- **b.** NH₃
- c. NH_4^+
- **d.** Cl⁻
- **5.** Which of the following is a polyprotic acid?
 - a. HCl
 - **b.** H_2SO_4
 - c. HNO_3
 - d. HF

Section Quiz, continued

- ____ **6.** Which stage of ionization of H_3PO_4 produces the most ions in solution?
 - **a.** $H_3PO_4(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + H_2PO_4^-(aq)$
 - **b.** $H_2PO_4^-(aq) + H_2O(l) \Leftrightarrow H_3O^+(aq) + HPO_4^{2-}(aq)$
 - **c.** $HPO_4^{2-}(aq) + H_2O(l) \hookrightarrow H_3O^+(aq) + PO_4^{3-}(aq)$
 - **d.** All stages produce the same number of ions in solution.
 - 7. Which of the following can act as a Lewis acid?
 - **a.** $NH_3(aq)$
 - **b.** $Cl^-(aq)$
 - c. $BF_4^-(aq)$
 - **d.** $Ag^+(aq)$
- 8. A Lewis acid
 - a. is an anion.
 - **b.** donates an electron pair to form a covalent bond.
 - **c.** can be a substance that does not contain a hydrogen atom.
 - **d.** All of the above
- **9.** Which of the following substances can act as an Arrhenius base, a Brønsted-Lowry base, and a Lewis base?
 - **a.** $F^-(aq)$
 - **b.** $NH_3(aq)$
 - c. $H^+(aq)$
 - **d.** NaOH(aq)
- _____**10.** Which of the following will be present in an aqueous solution of H₂SO₄?
 - **a.** $\mathrm{H_3O}^+(aq)$
 - **b.** $HSO_4^-(aq)$
 - **c.** $SO_4^{2-}(aq)$
 - **d.** All of the above

12 Solutions

Section: Types of Mixtures

/1
2. b
4. b
6. c
8. a
10. c

Section: The Solution Process

1. d	2. a	
3. d	4. c	
5. a	6. c	
7. a	8. d	
9. d	10. d	

Section: Concentration of Solutions

1. c	2. a
3. a	4. d
5. c	6. d
7. a	8. d
9. b	10. c

13 Ions in Aqueous Solutions and Colligative Properties

Section: Compunds in Aqueous Soutions

1. d	2. a
3. a	4. c
5. a	6. d
7. c	8. a
9. b	10. b

Section: Colligative Properties of Solutions

1. b	2. b
3. d	4. b
5. c	6. a
7. c	8. b
9. c	10. b

14 Acids and Bases

Section: Properties of Acids and Bases

1. d	2. c
3. b	4. a
5. a	6. a
7. a	8. c
9. d	10. b

Section: Acid-Base Theories

1. c	2. b
3. a	4. b
5. b	6. a
7. d	8. c
9. b	10. d

Section: Acid-Base Reactions

1. c	2. c	
3. c	4. d	
5. b	6. c	
7. d	8. c	
9. a	10. a	

15 Acid-Base Titration and pH

Section: Aqueous Solutions and the Concept of pH

1. d	2. d	
3. d	4. b	
5. c	6. b	
7. a	8. b	
9. d	10. d	

Section: Determining pH and Titrations

2. b	
4. a	
6. b	
8. b	
10. a	
	4. a 6. b 8. b

16 Reaction Energy

Section: Thermochemistry

1. d	2. a	
3. b	4. a	
5. c	6. c	
7. c	8. b	
9. c	10. b	

Section: Driving Forces of Peaction

Section: Dri	ving Forces of Reactions	
1. b	2. a	
3. d	4. a	
5. b	6. a	
7. a	8. b	
9. c	10. d	