Assessment Acids and Bases

Section Quiz: Properties of Acids and Bases

In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

- _____ 1. A strong acid
 - **a.** ionizes completely in solution.
 - **b.** produces hydronium ions in solution.
 - **c.** reacts with metals that are more active than hydrogen.
 - **d.** All of the above
 - **2.** When a solution of hydrochloric acid, HCl, reacts with zinc, which of the following substances is a reactant?
 - **a.** Cl⁻
 - **b.** H⁺
 - **c.** H_3O^+
 - **d.** H₂O
 - **3.** Which of the following characteristics describes a base?
 - **a.** reacts with oils in the skin and converts them to acids
 - **b.** forms alkaline solutions
 - **c.** is a nonelectrolyte
 - **d.** None of the above
 - **4.** Which of the following substances is a weak base?
 - **a.** NH₃
 - **b.** KOH
 - **c.** K₂O
 - d. NaOH
- _____ **5.** Strong acids are
 - **a.** strong electrolytes.
 - **b.** weak electrolytes.
 - **c.** nonelectrolytes.
 - **d.** nonionized.

Section Quiz, continued

- **6.** Hydroxides of Group 1 metals
 - **a.** are all strong bases.
 - **b.** are all weak bases.
 - **c.** are all acids.
 - **d.** do not dissociate in solution.
 - 7. Strong bases are
 - a. strong electrolytes.
 - **b.** weak electrolytes.
 - **c.** nonelectrolytes.
 - **d.** also strong acids.
 - **8.** Which of the following is *not* a strong acid?
 - a. HCl
 - **b.** H_2SO_4
 - c. CH₃COOH
 - **d.** HBr
 - 9. A highly polar molecule that contains a weak bond between a hydrogen atom and another element would be
 - **a.** a weak acid.
 - **b.** unable to ionize completely.
 - **c.** a nonelectrolyte.
 - **d.** a strong acid.
 - **10.** An Arrhenius acid is a chemical compound that
 - **a.** does not conduct electricity.
 - **b.** increases the concentration of \boldsymbol{H}^+ ions in solution.
 - **c.** reacts with water to remove H^+ ions.
 - **d**. dissociates to release OH⁻ ions in solution.

Copyright © by Holt, Rinehart and Winston. All rights reserved.

TEACHER RESOURCE PAGE

12 Solutions

Section: Types of Mixtures		
1. a	2. b	
3. c	4. b	
5. d	6. c	
7. a	8. a	
9. b	10. c	

Section: The Solution Process

1. d	2. a
3. d	4. c
5. a	6. c
7. a	8. d
9. d	10. d

Section: Concentration of Solutions

1. c	2. a
3. a	4. d
5. c	6. d
7. a	8. d
9. b	10. c

13 Ions in Aqueous Solutions and Colligative Properties

Section: Compunds in Aqueous Soutions

1. d	2. a
3. a	4. c
5. a	6. d
7. с	8. a
9. b	10. b

Section: Colligative Properties of Solutions

1. b	2. b	
3. d	4. b	
5. c	6. a	
7. с	8. b	
9. c	10. b	

14 Acids and Bases

Section: Prop	perties of Acids and Bases	5
1. d	2. c	
3. b	4. a	
5. a	6. a	
7. a	8. c	
9. d	10. b	

Section: Acid-Base Theories

2. b
4. b
6. a
8. c
10. d

Section: Acid-Base Reactions

1. c	2. c
3. c	4. d
5. b	6. c
7. d	8. c
9. a	10. a
9. a	10. a

15 Acid-Base Titration and pH

Section: Aqueous Solutions and the Concept of pH

1. d	2. d	
3. d	4. b	
5. c	6. b	
7. a	8. b	
9. d	10. d	

Section: Determining pH and Titrations

1. d	2. b
3. c	4. a
5. c	6. b
7. b	8. b
9. c	10. a

16 Reaction Energy

Section: Thermochemistry

1. d	2. a
3. b	4. a
5. c	6. c
7. с	8. b
9. c	10. b

Section: Driving Forces of Reactions

1. b	2. a
3. d	4. a
5. b	6. a
7. a	8. b
9. c	10. d

Copyright © by Holt, Rinehart and Winston. All rights reserved.