CHAPTER 1 : MEASUREMENTS

- **1.1** The scientific method
- **1.2 Units of measurement**
- 1.3 Uncertainty in measurement –precision and accuracy
- **1.4 Significant figures and calculations**
- 1.5 Dimensional analysis

<u>1.4</u> SIGNIFICANT FIGURES AND CALCULATIONS

1.4

Significant figures and calculations

Significant Figures in Measurements

- Significant figures in a measurement include all of the digits that are known, plus one more digit that is estimated.
- Measurements must be reported to the correct number of significant figures.

Be a Topper in Chemistry

Significant Figures

•Any digit that is not zero is significant

2.234 kg 4 significant figures

•Zeros between nonzero digits are significant

607 m 3 significant figures

•Zeros to the left of the first nonzero digit are **not** significant

0.07 L 1 significant figure

•If a number is greater than 1, then all zeros to the right of the decimal point are significant

5.0 mg 2 significant figures

•If a number is less than 1, then only the zeros that are at the end and in the middle of the number are significant

0.00520 g 3 significant figures

You must be within 1 sig fig – it does not need to be perfect, but sig figs DO count!

Rules for Counting Significant Figures

- <u>Two special situations</u> have an *unlimited* number of significant figures:
- 1. Counted items
 - a) 23 people, or 425 thumbtacks
- 2 Exactly defined quantities
 - b) 60 minutes = 1 hour

Sig Fig Practice #1

How many significant figures in the following?

1.0070_m →	5 sig figs	
17.10 kg →	4 sig figs	
100,890 L →	5 sig figs	These all come
<u>3.29 x 10³ s</u> →	3 sig figs	measurements
0.005 <u>4 c</u> m →	2 sig figs	
3,200,000 mL → 5 dogs →	2 sig figs unlimited mtopper.com Be a Topper in Chemistry	This is a counted value

How many significant figures are in each of the following measurements?

24 mL2 significant figures3001 g4 significant figures

0.0320 m³ 3 significant figures

6.4 x 10⁴ molecules

560 kg

2 significant figures

2 significant figures

Rounding Calculated Answers

- Rounding
 - Decide how many significant figures are needed
 - Round to that many digits, <u>counting from the *left*</u>
 - Is the next digit less than 5? Drop it.
 - Next digit 5 or greater? Increase by 1
 - 3.016 rounded to hundredths is 3.02
- 3.013 rounded to hundredths is 3.01
- 3.015 rounded to hundredths is 3.02
- 3.045 rounded to hundredths is 3.04
- 3.04501 rounded to hundredths is 3.05

Rounding Calculated Answers

- Addition and Subtraction
 - The answer should be rounded to the same number of <u>decimal places</u> as the *least* number of decimal places in the problem.Examples:

Examples

Make the following have 3 sig figs:

- > 761.50 → 762
- > 14.334 \rightarrow 14.3
- \succ 10.44 \rightarrow 10.4
- ≻ 10789 → 10800
- > 8024.50 → 8020
- > 203.514 → 204

Rounding Calculated Answers

Multiplication and Division

 Round the answer to the same number of <u>significant</u> <u>figures</u> as the <u>least</u> number of significant figures in the problem.

Rules for Significant Figures in Mathematical Operations

Multiplication and Division: # sig figs in the result equals the number in the least precise measurement used in the calculation.

 $6.38 \times 2.0 = 12.76 \rightarrow 13$ (2 sig figs)

Significant Figures in Calculations

- In general a calculated answer <u>cannot</u> be more precise than the *least precise* measurement from which it was calculated.
- Ever heard that a chain is only as strong as the weakest link?
- Sometimes, calculated values need to be *rounded off*.

Sig Fig Practice #2

Calculation	Calculator says:	<u>Answer</u>
3.24 m × 7.0 m	22.68 m ²	23 m ²
$100.0 \text{ g} \div 23.7 \text{ cm}^3$	4.219409283 g/cm ³	4.22 g/cm ³
0.02 cm x 2.371 cm	0.04742 cm ²	0.05 cm ²
710 m ÷ 3.0 s	236.6666667 m/s	240 m/s
1818.2 lb x 3.23 ft	5872.786 lb.ft	5870 lb·ft
1.030 g ÷ 2.87 mL	2.9561 g/mL Chemtopper.com Be a Topper in Chemistry	2.96 g/mL

Rules for Significant Figures in Mathematical Operations

Addition and Subtraction: The number of decimal places in the result equals the number of decimal places in the least precise measurement.

6.8 + 11.934 =

18.734 → 18.7 (3 sig figs)

89.332

— one significant figure after decimal point

90.432 — round off to 90.4

-3-393 two significant figures after decimal point

Be a Topper in Chemistr

0.7867 round off to 0.79

Sig Fig Practice #3

Calculation	Calculator says:	Answer
3.24 m + 7.0 m	10.24 m	10.2 m
100.0 g - 23.73 g	76.27 g	76.3 g
0.02 cm + 2.371 cm	2.391 cm	2.39 cm
713.1 L - 3.872 L	709.228 L	709.2 L
1818.2 lb + 3.37 lb	1821.57 lb	1821.6 lb
2.030 mL - 1.870 mL	0.16 mL Chemtopper.com Be a Topper in Chemistry	0.160 mL